Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electronic transport and optical properties of indium oxide thin films prepared by thermal oxidation

Identifieur interne : 001C74 ( Main/Repository ); précédent : 001C73; suivant : 001C75

Electronic transport and optical properties of indium oxide thin films prepared by thermal oxidation

Auteurs : RBID : Pascal:13-0029857

Descripteurs français

English descriptors

Abstract

Indium oxide (In2O3) thin films were prepared using thermal oxidation of metallic films. Indium metallic thin films were deposited onto glass substrates, by vacuum thermal evaporation. Optical and electronic transport properties of thermally oxidized In2O3 films were investigated and these properties were correlated with their preparation conditions, more exactly with oxidation temperatures (Tox = 623 K, 673 K and 700 K, respectively). Structural analysis, investigated by X-ray diffraction and electron diffraction, reveals that the obtained films possess a polycrystalline structure. The temperature dependence of electrical conductivity was studied using surface-type cells with Ag electrodes. The electronic transport mechanism, in respective films, is discussed in terms of crystallite boundary trapping, proposed by Seto. Some characteristic parameters such as energy barrier, impurity concentration, distribution of interface states, were determined. Transmission and reflection spectra were recorded and by using the values of these coefficients, some optical parameters were calculated (absorption coefficient, optical band gap, refractive index).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0029857

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electronic transport and optical properties of indium oxide thin films prepared by thermal oxidation</title>
<author>
<name sortKey="Rambu, A P" uniqKey="Rambu A">A. P. Rambu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Alexandru loan Cuza University of Iasi University, 11 Carol I Blvd</s1>
<s2>700506 Iasi</s2>
<s3>ROU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Roumanie</country>
<wicri:noRegion>700506 Iasi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sirbu, D" uniqKey="Sirbu D">D. Sirbu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Alexandru loan Cuza University of Iasi University, 11 Carol I Blvd</s1>
<s2>700506 Iasi</s2>
<s3>ROU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Roumanie</country>
<wicri:noRegion>700506 Iasi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dobromir, M" uniqKey="Dobromir M">M. Dobromir</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Alexandru loan Cuza University of Iasi University, 11 Carol I Blvd</s1>
<s2>700506 Iasi</s2>
<s3>ROU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Roumanie</country>
<wicri:noRegion>700506 Iasi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rusu, G G" uniqKey="Rusu G">G. G. Rusu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Alexandru loan Cuza University of Iasi University, 11 Carol I Blvd</s1>
<s2>700506 Iasi</s2>
<s3>ROU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Roumanie</country>
<wicri:noRegion>700506 Iasi</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0029857</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0029857 INIST</idno>
<idno type="RBID">Pascal:13-0029857</idno>
<idno type="wicri:Area/Main/Corpus">001423</idno>
<idno type="wicri:Area/Main/Repository">001C74</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1293-2558</idno>
<title level="j" type="abbreviated">Solid state sci.</title>
<title level="j" type="main">Solid state sciences</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption band</term>
<term>Absorption coefficients</term>
<term>Absorption spectra</term>
<term>Crystallites</term>
<term>Electrical conductivity</term>
<term>Electron diffraction</term>
<term>Electronic properties</term>
<term>Electronic structure</term>
<term>Energy barrier</term>
<term>Impurity density</term>
<term>Indium</term>
<term>Indium oxide</term>
<term>Interface states</term>
<term>Metallic thin films</term>
<term>Microstructure</term>
<term>Optical absorption</term>
<term>Optical properties</term>
<term>Oxidation</term>
<term>Photonic band gap</term>
<term>Polycrystals</term>
<term>Reflection spectrum</term>
<term>Refractive index</term>
<term>Silver</term>
<term>Structural analysis</term>
<term>Surface conductivity</term>
<term>Temperature dependence</term>
<term>Thin films</term>
<term>Transport processes</term>
<term>Transport properties</term>
<term>Trapping</term>
<term>Vacuum deposition</term>
<term>Vacuum evaporation</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électronique</term>
<term>Structure électronique</term>
<term>Phénomène transport</term>
<term>Propriété transport</term>
<term>Propriété optique</term>
<term>Oxyde d'indium</term>
<term>Couche mince</term>
<term>Oxydation</term>
<term>Indium</term>
<term>Couche mince métallique</term>
<term>Evaporation sous vide</term>
<term>Dépôt sous vide</term>
<term>Analyse structurale</term>
<term>Diffraction RX</term>
<term>Polycristal</term>
<term>Argent</term>
<term>Diffraction électron</term>
<term>Microstructure</term>
<term>Dépendance température</term>
<term>Conductivité électrique</term>
<term>Conductivité superficielle</term>
<term>Cristallite</term>
<term>Piégeage</term>
<term>Barrière énergie</term>
<term>Concentration impureté</term>
<term>Etat interface</term>
<term>Spectre absorption</term>
<term>Spectre réflexion</term>
<term>Absorption optique</term>
<term>Coefficient absorption</term>
<term>Bande absorption</term>
<term>Bande interdite photonique</term>
<term>Indice réfraction</term>
<term>In2O3</term>
<term>In</term>
<term>Substrat verre</term>
<term>7361</term>
<term>7866</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indium oxide (In
<sub>2</sub>
O
<sub>3</sub>
) thin films were prepared using thermal oxidation of metallic films. Indium metallic thin films were deposited onto glass substrates, by vacuum thermal evaporation. Optical and electronic transport properties of thermally oxidized In
<sub>2</sub>
O
<sub>3</sub>
films were investigated and these properties were correlated with their preparation conditions, more exactly with oxidation temperatures (T
<sub>ox</sub>
= 623 K, 673 K and 700 K, respectively). Structural analysis, investigated by X-ray diffraction and electron diffraction, reveals that the obtained films possess a polycrystalline structure. The temperature dependence of electrical conductivity was studied using surface-type cells with Ag electrodes. The electronic transport mechanism, in respective films, is discussed in terms of crystallite boundary trapping, proposed by Seto. Some characteristic parameters such as energy barrier, impurity concentration, distribution of interface states, were determined. Transmission and reflection spectra were recorded and by using the values of these coefficients, some optical parameters were calculated (absorption coefficient, optical band gap, refractive index).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1293-2558</s0>
</fA01>
<fA03 i2="1">
<s0>Solid state sci.</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electronic transport and optical properties of indium oxide thin films prepared by thermal oxidation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RAMBU (A. P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIRBU (D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DOBROMIR (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RUSU (G. G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Faculty of Physics, Alexandru loan Cuza University of Iasi University, 11 Carol I Blvd</s1>
<s2>700506 Iasi</s2>
<s3>ROU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1543-1549</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11118</s2>
<s5>354000509011570230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0029857</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state sciences</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Indium oxide (In
<sub>2</sub>
O
<sub>3</sub>
) thin films were prepared using thermal oxidation of metallic films. Indium metallic thin films were deposited onto glass substrates, by vacuum thermal evaporation. Optical and electronic transport properties of thermally oxidized In
<sub>2</sub>
O
<sub>3</sub>
films were investigated and these properties were correlated with their preparation conditions, more exactly with oxidation temperatures (T
<sub>ox</sub>
= 623 K, 673 K and 700 K, respectively). Structural analysis, investigated by X-ray diffraction and electron diffraction, reveals that the obtained films possess a polycrystalline structure. The temperature dependence of electrical conductivity was studied using surface-type cells with Ag electrodes. The electronic transport mechanism, in respective films, is discussed in terms of crystallite boundary trapping, proposed by Seto. Some characteristic parameters such as energy barrier, impurity concentration, distribution of interface states, were determined. Transmission and reflection spectra were recorded and by using the values of these coefficients, some optical parameters were calculated (absorption coefficient, optical band gap, refractive index).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Propriété transport</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Transport properties</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Propiedad transporte</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Oxydation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Oxidation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Couche mince métallique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Metallic thin films</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Evaporation sous vide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Vacuum evaporation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dépôt sous vide</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Vacuum deposition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Analyse structurale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Structural analysis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Análisis estructural</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>XRD</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Diffraction électron</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Electron diffraction</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Conductivité superficielle</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Surface conductivity</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Cristallite</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Crystallites</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Piégeage</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Trapping</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Barrière énergie</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Energy barrier</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Barrera energía</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Etat interface</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Interface states</s0>
<s5>38</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>39</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>40</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Absorption optique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Optical absorption</s0>
<s5>41</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Absorción óptica</s0>
<s5>41</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
<s5>42</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
<s5>42</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Bande absorption</s0>
<s5>43</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Absorption band</s0>
<s5>43</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Banda absorción</s0>
<s5>43</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Bande interdite photonique</s0>
<s5>44</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Photonic band gap</s0>
<s5>44</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>45</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>45</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="38" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>66</s5>
</fC03>
<fN21>
<s1>014</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001C74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0029857
   |texte=   Electronic transport and optical properties of indium oxide thin films prepared by thermal oxidation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024